Comparison of Different Convolutional Neural
Network Architecture for Pothole Detection

Jeyanth K. Ramasamy Janvi Patel
Post-graduate Student Post-graduate Student
Department of Computer Science Department of Computer Science
Dalhousie University Dalhousie University
Halifax, NS, Canada B3H 4R2 Halifax, NS, Canada B3H 4R2
jy2533640@dal.ca jn410076@dal.ca
Robinder J. Dhillon

Post-graduate Student
Department of Computer Science
Dalhousie University
Halifax, NS, Canada B3H 4R2
rb802397@dal.ca

Vishal U. Sancheti
Post-graduate Student
Department of Computer Science
Dalhousie University
Halifax, NS, Canada B3H 4R2
vs488310Q@dal.ca

Abstract

Road maintenance has always been a challenging task. Year after year, the accident
rates are increasing due to the up-surging potholes count. As the road maintenance
process is done manually in most places, it consumes enormous time, requires
human labor, and is subjected to human errors. Thus, there is a growing need for a
cost-effective automated identification of potholes. Many approaches proved good
results in applying deep learning [1] for different object detection. Convolutional
Neural Networks (CNNs) can learn the art of extracting relevant features from an
Image. The data set consisting of 510 training images, and 171 testing images
of normal road and pothole is trained on VGG, AlexNet, ResNet, LeNet, and the
results are compared. The model is then tested on different pothole images, and it
detects with reasonable accuracy.

1 Introduction

The term 'road’ for land transportation infrastructure covers all parts of the road, including comple-
mentary buildings and traffic equipment. In transportation to support safety, security, and comfort, a
decent and good quality road is needed. One indicator of road feasibility is whether or not there are
potholes on the road. Traditionally, one method used to obtain data on the number of potholes on the
road is based on reports from the surrounding community. To improve the data gathering method, we
suggest creating a system that detects potholes on the road using a Convolutional Neural Network.

The pothole is detected by acquiring the image of the highway, which is then convoluted with the
convolution matrix so that the dimensions of the image matrix become smaller without losing the



image characteristics. Then the convolution results are trained with data sets using the neural network
to issue a decision whether the pothole is detected or not. Detection of potholes is much more difficult
when compared to other objects such as pedestrians, vehicles, traffic signs, etc., because the former
has a wide range of geometric. When comparing the recognition algorithms, Convolutional Neural
Networks (CNN) has proven to be one of the best [2].

The purpose of this study is to identify the best convolutional neural network model suited to detect
potholes from an image. In further research, the system can apply this processing technique to
real-time video to overcome problems in monitoring and evaluating roads.

2 Related Work

There are so many architectures and algorithms that can be used for potholes detection. Evaluating a
pothole in most cases requires 3D equipment, which is very expensive and not feasible on a large scale
[3]. Instead, detecting a defect in the road using an image and then further processing it into defective
and not-defective regions and analyzing the patterns in both the regions can help differentiate a
pothole from the non-defective region, which is essentially the road.

Another method of analyzing these problems is using three features of an image: the texture, shape,
and dimensions of the defective area in the frame [4], [5]. But the method does not have machine
learning at the core of it. Therefore, one of the most basic ways to carry out potholes detection is
using Convolutional Neural Networks (CNNs).

The CNN-based method consists of two stages. The first stage is the classification of images using
feed-forward, and the second stage is the learning stage with the backpropagation method. Before
classification, preprocessing is done and then trained using the feed-forward and backpropagation
methods. Finally, the classification stage uses the feed-forward method with updated weights and
biases.

Earlier, some of the Object Detection fields started with Region-Based Convolutional Neural Networks
(R-CNN) and moved to faster and more advanced algorithms like YOLO (You Only Look Once) and
SSD (Single-Shot Detection). The R-CNNs use selective search algorithms to extract 2000 bounding
boxes from the input image in the first step itself to stick with processing only the most essential
features in an input based on color, pattern, shape, and size [6].

The R-CNNs use a three-stage mechanism: feature extraction via Selective Search Algorithm, SVM
classification, and Regression modeling for tight bounding boxes. The Fast R-CNN model uses a
single-stage mechanism where it directly passes the input to a CNN, and the output from this CNN
is the Regions of Interest (Rol) [7]. Then an Rol pooling layer is applied to the CNN’s output to
warp the images to the size the Network is accustomed to. These Rols are given to a fully connected
Neural Network (NN) that segregates them and returns bounding boxes on the Rols using linear
regression and softmax networks working in a parallel manner and provides drastic speed gains as
well as savings in terms of the size of the model.

Although Fast R-CNN uses a one-stage mechanism, it relies on the selective search method initially,
which consumes time. Hence, trying out CNN-based models is a much more efficient way we have
implemented in this work and compared performance of multiple CNN-based models such as VGG,
AlexNet, ResNet, and LeNet.

3 Data and Methodology

3.1 Data Pre-Processing

For our project, We downloaded images from a data set on Kaggle. Initially, we checked if all images
were colored or grayscale. Since grayscale images’ proposition was less than 3%, we removed them,
and now the dataset has only colored images. We resized and compressed all the images so that
the dimensions and pixel intensity were the same for all images. These pre-processed images are
converted to numerical data. Colored images have three channels denoting R, G, B colors. Since the
range of each pixel in the channel is 0-255, normalization is carried out so that the dataset can use
a standard scale. The dataset is then divided into training and test datasets in the ratio of 7:3, 70%
being the training data and 30% being test data.



3.2 Data Operations

All the images are resized accordingly to model architecture. The image data is stored in a NumPy
array. Correspondingly, the labels ("NORMAL" and "POTHOLE") of the images are stored in another
array. LabelEncoder is used to encode target labels with values between 0 and n_classes-1. The label
array is transformed into categorical values. The data array is normalized for better approximation.

We have used image augmentation techniques such as shifting, rotating, and flipping. Each copy is
unique in certain respects. When the model is trained on new, slightly altered images, it becomes
more resilient. Further, the learning rate for the models is reduced during run-time using the
ReduceLROnPlateau callback. Loss functions, activation functions, and optimizers are decided to
depend on the model’s model architecture and outcome.

3.3 Pothole Detection using LeNet

The LeNet network has five layers with learnable parameters and hence named Lenet-5. LeNet has
seven layers which comprise the convolutional layer, pooling layer, and full connection layer. In a
CNN, convolutional layers are typically arranged so that they gradually decrease the spatial resolution
of the representations while increasing the number of channels. It has an input layer with a feature
map size of 32X32X1. Then it is followed by an alternate convolution layer and average pooling
layer. To handle the vanishing gradient problem, we have used the softmax activation function for the
dense layer. The loss function was altered from binary_crossentropy to categorical_crossentropy to
compute the cross-entropy loss between the labels and predictions. Finally, fine-tuning of the model
was carried out to achieve better accuracy.

3.4 Pothole Detection using AlexNet

AlexNet has a similar architecture as that of LeNet, but it has more filters per layer and has stacked
convolutional layers. The architecture consists of five convolution layers and three fully connected
layers. Input to this model is the images of size 227X227X3. AlexNet uses ReLU instead of tanh,
which accelerates the model’s speed to six times with the same accuracy. It uses a dropout layer with
an input unit of 0.5. It uses multiple GPUs; half of the model’s neurons in one GPU and the other
half on another GPU which helps in cutting training time, and a bigger model can be trained. Similar
to LeNet, it uses categorical_crossentropy loss function and softmax activation function.

3.5 Pothole Detection using VGG

VGG Neural Networks. While previous derivatives of AlexNet focused on smaller window sizes
and strides in the first convolutional layer, VGG addresses another critical aspect of CNNs: depth.
VGG uses ReLu as an activation function which increases the efficiency. VGG takes in a 224x224
pixel RGB image. VGG has three fully connected layers: the first two have 4096 channels each, and
the third has 1000 channels, 1 for each class. All of VGG’s hidden layers use ReLLU (a tremendous
innovation from AlexNet that cuts training time). The convolution stride is fixed to 2 pixels so that
the spatial resolution is preserved after convolution. Max-pooling is performed over a 2x2 pixel
window, with stride 2. VGG does not generally use Local Response Normalization (LRN), as LRN
increases memory consumption and training time with no particular increase in inaccuracy.

3.6 Pothole Detection using ResNet

Residual Neural Network is an artificial neural network whose core idea is an "identity shortcut
connection” that skips one or more layers. The skipped layers are then restored as it learns the
feature space. Learning speed increases as skipping reduces the impact of the vanishing gradient.
Since ResNet has a deep network, the gradient from which loss function is calculated reduces to
zero after several applications of the chain rule. ResNet consists of one convolution and pooling
step followed by 4 layers of similar behavior. Each of the layers follows the same pattern. They
perform 3x3 convolution with a fixed feature map dimension (F) [64, 128, 256, 512] respectively,
bypassing the input every 2 convolutions. We define the model using tensorflow’s prebuilt ResNet50
and replacing the final fully-connected layer with a dense layer of 4096 nodes with ReLU activation.
It is then followed by dense and dropout layers with required parameters. Like other models, it uses
categorical_crossentropy loss function and Adam optimizer.



4 Experiments

Various experiments were conducted on the selected dataset. For the purpose of the experiment,
images were resized either to 227x227 or 32x32, depending on the model. Also, they were labeled
with 0 and 1 depending on the directory they were placed in, i.e., either Normal or Pothole. These
images and labels finally generated a training dataset of 510 images and a test dataset of 170 images
and also made sure they both did not have the same image.

Figure 1: Random Samples from Pre-Processed and Labelled Dataset
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Execution of all the selected CNNs carried out on CPU-based engine using google collab platform
either on hosted run-time or local run-time using jupyter notebook.

4.1 Model Tuning
Initially all the selected CNNs were tuned individually to improve performance. The various actions

performed are as follow:

4.1.1 LeNet

Table 1: Model Tuning on LeNet

Actions Performed

Description Accuracy (%)
1 Initialized with tanh activation function and SGD optimizer with Ir=0.1  ~49.5
2 Introduced ReduceLRonPlateau and changed Ir to 1e-6 ~50.5
3 Changed Ir to Se-4 ~48.4
4 Changed activation function from tanh to ReLU and Ir to 0.2 ~68.6
5 Changed optimizer from SGD to Adam and Ir to 0.01 ~82.4
6  Changed Ir to Se-4 ~84.7




4.1.2 AlexNet
Table 2: Model Tuning on AlexNet
Actions Performed
Description Accuracy (%)
1  Initialized with ReLU activation function and SGD optimizer with Ir=0.2  ~49.41
2 Introduced Reducel.LRonPlateau and changed Ir to 1e-6 ~50.1
3 Changed Ir to Se-4 ~52.54
4 Changed optimizer from SGD to Adam ~82.94
413 VGG
Table 3: Model Tuning on VGG
Actions Performed
Description Accuracy (%)

1 Initiated with neural nodes input same as VGG16 architecture 52
2 Changed activation function “tanh” from “relu” and architecture* 50
3 Changed drop out to 0.4 81
4 Changed drop out to 0.3 and epochs to 29 from 30 88
5 Changed epochs to 100 epochs 82.68
6  Changed activation function to “sigmoid” from “softmax” in dense layer 53
7  Changed optimizer from Adam to SGD 48
8 Added kernel regularizer = ‘12’ as fine tune parameter 90
9  Changed activation function by “elu” 90

* VGG16 and set neural inputs as 128 for convolution layers instead of 256, 512 inputs and dense
layers’ input neuron has also been changed by 128

4.1.4 ResNet
Table 4: Model Tuning on ResNet
Actions Performed
Description Accuracy (%)

1 Initialized with ReLU activation function and SGD optimizer with Ir=0.2 ~52.12

2 Introduced ReduceLRonPlateau and changed Ir to 1e-6 ~54

3 Changed Ir to Se-4 ~54.3

4 Changed optimizer from SGD to Adam ~96




4.2 Model Results

4.2.1 LeNet
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Table 5: Model Results

Model Accuracy (%) Confusion Matrix

LeNet  84.7(%) [[68 161[10 76]]
AlexNet  82.94(%) [[66 18][11 75]]
VGG 90(%) [[72 91[ 3 831]
ResNet  96(%) [[79 5][ 1 85]]

Figure 2: Sample Visualization for Different Models

5 Learnings

5.1 Activation function and Loss function

In a neural network, an activation function specifies how the input’s weighted number is converted
into an output from a node or nodes in a layer. The activation function chosen has a significant impact
on the neural network’s capability and efficiency.

In our experiment, the choice of activation function included tanh, ReLU, and ELU for Conv2D
layers and Sigmoid and Softmax for the Dense layer. It is observed that ReLU performed well for all
of the models. For VGG, ELU was used, which showed higher performance. ELU is very similar to
RELU except for negative inputs. They are both in identity function form for non-negative inputs.
Similarly, Softmax performed well compared to Sigmoid.

5.2 Optimizer

Optimizers are used to tinker the weights to shape the model into the most reliable one, while the
Loss acts as a road map for the optimizer directing it in the best way possible.

In our experiment, the models initially use SGD but eventually shifted to Adam. It utilizes the
combined advantages of two other variants of SGD: the Adaptive Gradient Algorithm (AdaGrad) and
Root Mean Square Propagation (RMSProp).



5.3 ReduceLROnplateau

ReduceLROnPlateau reduces the learning rate if there is no improvement in a metric. Often training
stagnates at some stage, and reducing the learning rate by a factor would benefit the model. It is
observed accuracy of the models was improved to a greater extent using this callback.

5.4 Model

The experiment results are shown in Table 5. It suggests every CNN with proper tuning performs well
with high accuracy. Thus, the quality of the algorithm could not be estimated with the only accuracy.
To assess further, the introduction of Precision, Recall, F1 Score, and Dice score Coefficient is proper.

Here, Precision (P), Recall (R), F1 Score (F1), and Dice score Coefficient (DSC) can be given using
following equations

P=TP/(TP + FP)

R=TP/(TP + FN)

F1=2(PxR)/(P+R))

DSC =2TP/((TP+ FP) + (TP + FN))

After calculating the newly introduced metrics we have following Table 6.

Table 6: Precision, Recall, F1, and DSC of Models

Model Precision Recall Fl1 DSC

LeNet 0.8717 04722 0.6125 0.7453
AlexNet 0.8571 0.4680 0.6054 0.8170
VGG 0.96 0.4645 6260 0.9230
ResNet  0.9875 0.4817 0.6475 0.9634

Here, It can be observed that VGG and ResNet outperforms LeNet and AlexNet. Also, ResNet has
better F1 and DSC compared to VGG.

6 Discussion and Conclusion

We implemented several experiments to identify the best CNN algorithm for pothole detection. We
believe pothole detection will reduce accidents and improve human beings’ safety for travel on the
road.

Based on the experimental observations, we can also conclude that with some proper tuning, VGG
and ResNet are best suited CNN models for pothole detection; moreover, ResNet performed the best
among all CNN models with our dataset.

Apart from pothole detection on an image, this project can be enhanced to use live video stream
with self-driving cars to identify the potholes on the road and alert the driver to reduce the speed in
advance. It is even possible to invent a new technology that automatically reduces the speed of the
vehicle based on the existence of potholes on the road.
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